PULSED POWER SYSTEM

脈衝功率系統

Po－Yu Chang

Institute of Space and Plasma Sciences，National Cheng Kung University

2023 Fall Semester
Tuesday 9：10－12：00
Lecture 9
http：／／capst．ncku．edu．tw／PGS／index．php／teaching／
Online courses：
https：／／nckucc．webex．com／nckucc／j．php？MTID＝md577c3633c5970f80cbc9e8 21927e016

Trigatron spark gap

- Best trigger performance: trigger and operation voltage are opposite, i.e.,

$$
\begin{aligned}
& U_{t} \times U_{g}<\mathbf{0} \\
& U_{g} \sim(80 \sim \mathbf{9 9} \%) U_{b}
\end{aligned}
$$

- $U_{g} \sim 50 \% U_{b}$ is possible, but with large delay and jitter.

Trigatron spark gap - $\boldsymbol{U}_{\boldsymbol{t}} \times \boldsymbol{U}_{\boldsymbol{g}}<\mathbf{0}$

- Step 1: Streamers begin to grow.

- Step 3: conducting channel is formed.

- Step 2: ionization density in the channel to grow after streamer touch the electrode

- Step 4: two thermalized arcing connecting two electrode and pin.

Trigatron spark gap - $\boldsymbol{U}_{\boldsymbol{t}} \times \boldsymbol{U}_{\boldsymbol{g}}>\mathbf{0}$

- Step 1: breakdown between the trigger pin and the grounded electrode.

- Step 2: breakdown between two main electrodes occurs due to the UV radiation emitted from the $1^{\text {st }}$ arc.

- Breakdown is possible but with large delay and jitter.

Longitudinal triggering

- Longitudinal-overvoltage

- Longitudinal-plasma
$\cup \uparrow \quad$ triggering $\left(U_{g}<U_{b 2}\right)$ U_{0}
- t_{a} : trigger actuating time.
- t_{d} : switching delay.
- t_{c} : commutation time.
- t_{s} : switching time.

Spark plug is a Trigatron

Spark plugs in cars are triggered by the inductive energy storage

Closing switch /load

https://images.saymedia-content.com/.image/t_share/MTc0Mjk3MzYyODg0MjA4NTA4/diy-auto-service-ignition-systems-operation-diagnosis-and-repair.png

The pulsed-power system in Pulsed-Plasma Laboratory

- A 1 kJ pulsed-power system at ISAPS, NCKU started being operated since September, 2019.

Experiments will be taken placed at the center of the vacuum chamber

Rail gap switch

Unit: mm

Low inductance rail-gap switches are used

Connector
Gas Out

Trigger

Connector
Electrode

Bridge

Knife edge trigger electrode

- The switch is pressurized with nitrogen gas (1~3 atm).
- Multi-channel discharges between two rail-like electrodes will be triggered by a fast trigger pulse generator (rising speed $>\mathbf{5 k V} / \mathrm{ns}$).

A slow trigger pulse generator was built using a ignition coil for cars

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)

Many MOSFET connected in series can be used to provide a fast high-voltage triggering pulse

$T_{\text {rise }}=140 \pm 1$ ns

A three-stage Marx generator is used to provide a fast high voltage trigger pulse

- In a Marx generator, capacitors are connected in parallel when they are being charged.
- Capacitors in the Marx generator are connected in series during discharge.

$$
V_{\text {out, ideal }}=-N \times V_{0}=-3 \times 20 \mathrm{kV}=-60 \mathrm{kV}
$$

The falling speed of high voltage pulse from the Marx meets the requirement for triggering rail-gap switches

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)

Multistep trigger system is used

Optical fiber
Fiber Transmitter

Spark-gap switch

- At least 3 channels were generated in each shot.

Multistep trigger system is used

Spark-gap switch

- At least 3 channels were

Multistep trigger system is used

Magneto-inertial fusion electrical discharge system

6-7 ns pulse 60 mJ @ 266 nm 300 mJ @ 532 nm 150 mJ @ 1064 nm

Delay: <1 ns Jitter: < 1 ns
O. V. Gotchev, etc., Rev. Sci. Instrum. 80, 043504 (2009)

Breakdown uncertainty increases with a larger holding voltage

Sheng-Hua Yan, Master Thesis 2018

Multistage spark-gap switch with laser triggering

- Simply scaling a three-electrode spark gap to multimegavolt operating voltages would lead to large gaps, making the jitter and inductance unacceptably high.
- Operating voltage of up to 6 MV and a switch current of 0.5 MA .
- It consists of 15 equal spark gaps and a trigger section.
- The operating voltage is around 90% of the selfbreakdown value with a prefire probability of 0.1%.
- The gap capacitances are small, 20% of the operating voltage occurs across the trigger section.

Laser
Hole

Multistage spark-gap switch with laser triggering

- The switch is $\mathbf{6 8} \mathrm{cm}$ long and 61 m in diameter.
- The $1^{\text {st }}$ gap is 5.7 cm and a UV laser pulse (KrF) with a 25 mJ pulse energy is necessary.
- ~1 ns after the laser pulse, a breakdown occurs in thetrigger gap and the voltage increases across the remaining gaps rapidly. An ignition wave propagates to the other gaps and ignites them sequentially.

Fig. 4.13. A 4 MV version of a multigap spark switch

- Total inductance: 400 nH ; Trigger delay: 20 ns ; jitter <0.4 ns.

Thyratrons

- Thyratrons are gas-filled switching devices with a gas pressure (30-80 $\left.\mathrm{Pa} / 3 \times 10^{-4}-8 \times 10^{-4} \mathrm{~atm}\right)$ much lower than a spark-gap switches.
- A triode configuration is used.
- The thyratron is characterized by the presence of a plasma, which allows the passage of large currents without significant electrode erosion.
- The hold-off voltage is limited by field emission, $>10^{5} \mathrm{~V} / \mathrm{cm}$.
- The anode-grid distance is $\mathbf{2 - 3} \mathbf{~ m m}$, $\sim 40 \mathrm{kV}$ hold-off voltage.

Thyratrons

- The cathode-grid distance corresponds to the Paschen minimum $U_{\text {min }}$.
- If $\mathrm{U}>\mathrm{U}_{\text {min }}$, a glow discharge is initiated between the cathode and the grid. => electrons from the glow discharge plasma can migrate rapidly through the openings in the grid to the main discharge region between the grid and the anode. => thyratron closes.

Thyratrons

- Operating voltage: several times 10 kV . After ignition: ~100 V => an appreciable power loss occurs and need to be dealt with by cooling.
- Delay: ~200 ns; jitter: ~ns.
- Operating times: $\mathbf{1 0}^{\mathbf{5}}$ hours; Repetition rates: few kHz; Operating power: MW.
- To regain the initial hold-off voltage: anode voltage must become slightly negative for 25-75 us for plasma to decay.

Thyratrons

- A thermionic cathode is used in a thyratron.
- Advantage: absence of a marked cathode potential drop using hot cathode.
- If cold cathode is used, potential drop is needed to accelerate the ions for secondary-electron production => lead to erosion of the cathode and thus the lifetime.
- A baffle is used as a screening element to avoide electron directly reaching the anode and causing the damage. It is shifted relatively to the grid to prevent a direct line of sight between cathode and anode.

The pseudospark switch

Anode

- The pseudospark switch operates in a low-pressure regime, where the mean free path of electrons and ions become comparable to the electrode spacing. Most electrons reach the anode without any ionizing collisions in the gas.
- Hollow cathode: increases the possible discharge path lengths.
- The diameter of the aperture determines the field penetration into the hollow cathode.

Cathode

The pseudospark switch

Anode

- A small number of initial electrons, triggered discharge in the hollow cathode can initiate the pseudospark discharge.
- The switching mechanism is based on the build-up of a highly ionized plasma.
- plasma build-up occurs first inside the hollow cathode where E/P is low.

The pseudospark switch

- Ions drift back into the hollow cathode => forming a positive space charge (virtual anode).
- Static electric field inside the hollow cathode is distorted.
- Electron production rate > loss rate in the hollow cathode and subsequently in the anodecathode gap.
- A low-resistivity plasma is estabilished, and breakdown of the gap occurs.
- Jitter: 10 ns ; Delay: 0.5 us.
- Advantage: high dl/dt, reverse current, long lifetime, low jitter.

Anode

The pseudospark switch with triggering system

Ignitrons

- Ignitron is a very high-current, highvoltage switch with
- a liquid mercury pool cathode
- an ignitor pin dipping into the liquid-metal reservoir.
- Internal mercury pressure: ~5 Pa
- Can switch a pulse charge of up to 2000 Colum.
- Air/water cooled may be needed.
- Internal splash and deionization baffles may be contained in some devices.
- Anode:

- Anode is massive to prevent an impulsive temperature rise during conduction.
- Anode is cooled through
(1) anode stem;
(2) radiation to the cooled walls.

Ignitrons

- Rise time ~ 300-500 ns.
- After current drops below a critical value => no more additional vapor is produced => with additional time to allow recombination and recondensation of mercury.
- The mercury vapor must be forced to recondense back into the pool.
- Repetition rate $\sim 1 \mathrm{~Hz}$

- Progressively eliminated due to the mercury-containing waste.

Krytrons

- Low-pressure gas discharge device with a tetrode configuration, sealed in a glass tube with a cold cathode.
- 1.3 kPa (9.75 torr) of helium gas.
- A special design of the anode-grid area + applied gas pressure => large hold-off voltage.
- An already existing plasma is created by a glow discharge between the special keep-alive electrode and the cathode.
=> short trigger delay: ~30 ns.

- Rise time: ~1 ns, Vmax: 8kV,

$$
\text { Imax: } 3 \text { kA. }
$$

- Pulse length~10 us, repetition rate $\sim 1 \mathrm{kHz}$
- A positive pulse at the control grid initiate the switch.

Krytrons

- A ${ }^{63} \mathrm{Ni} \beta$-emitter may be enclosed to create a weak permanent preionization.
- It is widely used in fast trigger generators and Pockels cell driver and also ideal for use in the detonating circuitry of bombs.

Triggered Vacuum Gap (TVG)

- A three-electrode system with $\mathrm{P}=0.001 \mathrm{~Pa}$ (7.5×10^{-6} Torr).
- Closed by injection of a plasma cloud.
- Hold-off voltage depends on the properties of the electrode surfaces.
- I up to 10 kA , V up to 100 kV . Repetition rates of several kHz are possible if cooled.
- The gas-plasma mixture is created with the help of an auxiliary arc, burning between two electrodes inserted into one of the main electrodes.
- Jitter ~ 30 ns; switching time ~100 ns.

Semiconductor closing switches

- The limiting switching characteristics of semiconductor devices are:
- Relatively low mobility
- Low density of charge carries
- Comparatively low operating temperature
=> Large volume of the conducting region is required to conduct large currents.

Thyristors

Fig. 4.22. Structure of thyristor, and two-transistor equivalent circuit

Thyristors

- Three modes of operation:
- Reverse blocking state
- Forward blocking state
- Conduction or on state

Reverse Blocking Mode

Forward Biased Condition

Fig 2: Forward Conduction

Most of the voltage is held by J_{1}.

Most of the voltage is held by J_{2}.

Thyristors

- Three modes of operation:
- Reverse blocking state
- Forward blocking state
- Conduction or on state

Reverse Blocking Mode
Most of the voltage is held by J_{1}.

Forward Biased Condition

Most of the voltage is held by J_{2}.

Thyristors

- Three modes of operation:
- Reverse blocking state
- Forward blocking state
- Conduction or on state

Reverse Blocking Mode
Most of the voltage is held by J_{1}.

Forward Biased Condition

Most of the voltage is held by J_{2}.

Thyristors

- Without any external action, the thyristor cannot come back from the conducting to the blocking state.
- Two methods are generally applied:
- Commutation of the current by polarity inversion.
- Commutation of the current, supported by gate-assisted turn-off.

Fig 2: Forward Conduction

IGBT

IGBT

- Advantage:
- Bipolar transistors (BJT) - low resistance in the switched-on state
- Field effect transistors (FET) -loss-free gate control
- Switch-on times:
~ several times 10 ns.
- It has a limited reverse-blocking capability => an external diode is sometimes used in parallel.

- High-power IGBT: blocking voltages $\mathrm{V} \sim 4 \mathrm{kV}$, on state I $\sim 3 \mathrm{kA}$

Optically activated semiconductor switches

$$
\begin{gathered}
\nabla j_{n}=e\left(R_{n}-G_{n}\right)+e \frac{\partial n}{\partial t} \\
\nabla j_{p}=-e\left(R_{p}-G_{p}\right)-e \frac{\partial p}{\partial t} \\
\text { eG } G_{\text {av }}=\alpha_{n}\left|j_{n}\right|+\alpha_{p}\left|j_{p}\right|
\end{gathered}
$$

Rn: recombination rate.
Gn: generation rate.

- Electron and hole generation is caused either by optical excitation or by avalanche ionization at sufficiently high electric fields.

Fig. 4.31. Ionisation rate coefficients α_{n} and α_{p}

Optically activated semiconductor switches

- The wavelength should be larger than 0.9 um. Therefore a Nd:YAG laser, wavelength = 1.06 um, is an appropriate light source.

Fig. 4.32. Optical absorption depth in GaAs as a function of wavelength

Optically activated semiconductor switches

- Linear photoconducting regime: the available number of charge carriers is determined only by the laser intensity.
- Nonlinear regime: the number of charge carriers is increased by collisional ionization and as in a gas switch increases exponentially.

Magnetic switches

- Relatively small losses and without wear.
- While the capacitor is being charged: the coil has a ferromagnetic core with high inductance at the beginning: $\mathrm{V}=\mathrm{Ld} / / \mathrm{dt}$ => like an open switch.
- When saturation of the core is reached by the leakage current flowing through the coil => L drops abruptly by a factor of $\mu=>$ switch is closed.
- $\mu=B / H$->0 when saturated.
- The hysteresis loop should approximate a rectangular form, with an abrupt change of the permeability over several orders of magnitude when the saturation point is reached.

Summary

Type	Hold-off poten- tial (kV)	Peak current (kA)	Cumulative charge (A s)	Repetition rate (Hz) [commutation time (ns)]	Lifetime (number of pulses)	Remarks
Spark gap	1-6000	$\begin{aligned} & 10^{-3} \\ & 1000 \end{aligned}$	0.1-50	$\begin{aligned} & 1-10 \\ & {[1-1000]} \end{aligned}$	$10^{3}-10^{7}$	Lifetime is determined by electrode erosion
Thyratron	5-50	0.1-10	10^{-3}	$\begin{aligned} & 1000 \\ & {[5-100]} \end{aligned}$	$10^{7}-10^{8}$	Applied in lasers and accelerators
Ignitron	> 10	> 100	2000	$\begin{aligned} & 1 \\ & {[1000]} \end{aligned}$	$10^{5}-10^{6}$	Applied in lasers and accelerators
TVG	0.5-50	1-10	40	$\begin{aligned} & 1 \\ & {[10-100]} \end{aligned}$	$>10^{4}$	
Pseudospark	1-50	1-20	1	$\begin{aligned} & 1-1000 \\ & {[>10]} \end{aligned}$	$10^{6}-10^{8}$	Similar to Thyratron
Krytron	8	3	0.01-0.1	$\begin{aligned} & <1000 \\ & {[1-10]} \end{aligned}$	10^{7}	Very short delay and commutation time
Magnetic Switch	1000	$\begin{aligned} & 100- \\ & 1000 \end{aligned}$		$\begin{aligned} & 10 \\ & {[5-10000]} \end{aligned}$	$10^{8}-10^{9}$	Cannot be triggered; one operating point only
Thyristor	<5	<5	10^{-2}	$\begin{aligned} & 10 \\ & {[>1000]} \end{aligned}$	10^{8}	Can be stacked; expensive; complex
IGBT	<4	3		100	10^{8}	Can be switched off
GaAs photoactivated switch	<20	1-10	$<10^{-4}$	$\begin{aligned} & <10 \\ & {[1-10]} \end{aligned}$	$10^{2}-10^{3}$	Needs intense light source

Outlines

- Switches
- Closing switches
- Opening switches
- Pulse-forming lines
- Blumlein line
- Pulse-forming network
- Pulse compressor
- Pulse transmission and transformation
- Self-magnetic insulation
- Pulse transformer
- Voltage multiplier
- H-bridge pulse generator
- Fast high-voltage pulse generator

Opening switches

- An opening switch is characteristed by "a sudden growth of its impedance" by
- External actuator
- Internal process - depend on the amount of the charge conducted through the switch
- The mechanism can be
- Resistive nature: common fuse
- Inductive nature: flux compression, $\mathrm{L}(\mathrm{t}) \gg \mathrm{L}(0)$
- Capactive nature, $\mathrm{C}(\mathrm{t}) \ll \mathrm{C}(0)$

Opening switches

- Requirement:
- Long current conduction time.
- Large current and small losses during conduction.
- Fast impedance rise during opening.
- High impedance after opening \& large voltage hold-off during current interruption.
- Short recovery time, i.e., high repetition rate capability.
- Long lifetime, i.e., small wear.

Fuses

- Melting fuse - the most widely known opening switch.
- A thin wire / a foil embedded in a gaseous, liquid or granular medium.
- Based on Melting, Boiling, or Vaporization of a conductor,
- Fast opening is possible: <50 ns
- Conduction time can be determined
 by the type of material and its geometry.

Fuses

- The resistivity of most metals rises continuously with T both in the solid and in the liquid phase.
- The high magnetic pressure associated with the current flowing through the fuse can maintain a high density and therefore metallic conductivity beyond the critical temperature.
- Only after the onset of expansion does the metallic conductivity disappear.

Fuses

- If the density of the metal vapor becomes sufficiently small -> electron avalanche processes can lead to the initiation of arcs in the vapor.
- The purpose of the surrounding medium is therefore to quench or prevent arc formation.
- Advantage - simplicity, adapt their parameters to the experimental conditions by choosing the appropriate cross-section, length, and \#/ of elements.

Anode

Arc may form.

Cathode

Mechanical Interrupters

－Vacuum interrupter switch： 2 planar／disc electrodes （ 1 fixed the other movable）in a vacuum envelope （ 0.1 Pa （ 7.5×10^{-4} Torr）or less）．
－Closed position－low resistance（10－50 u ）from a tight metal－to－metal contact
－Open position－separated by an actuator（致動器）．
－During the process of switch breaking－an arc is likely to be drawn and sustained by metal vapor evaporated from the electrodes．
－In unipolar system，a current counter－pulse is needed to
 reduce the power input to the arc to allow the residual arc plasma to recombine．
－After $\mathrm{I}=0, \mathrm{dU} / \mathrm{dt}=\mathbf{2 4} \mathbf{~ k V} / \mathrm{us}$ is possible．
－Repetitive frequency－few tens of hertz．
－Opening speed－tens of us．

Counter-pulse arrangement

Superconducting opening switches

- Superconducting state -> normal conduction
- Three ways to trigger:
- The current itself
- An external pulsed magnetic field
- pulse heating

- The repetition rate depends on the speed of recovery to the superconducting state.
- Problem: consists of the additional cooling necessary to remove the heat flowing into the cryogenic coolant during opening.

Plasma opening switches

- Suitable for high currents and short switching times.
- Plasma bridge of low density ($10^{13}-10^{15} \mathrm{~cm}^{-3}$).
- $10^{15}-10^{16} \mathbf{~ c m}^{-3}$ for several hundred kA or MA.
- $10^{13} \mathrm{~cm}^{-3}$ is needed to conduct currents for less than 100 ns and opening in less than 10 ns .

Coaxial system with an injected pulsed gas column

- The gas is made into a plasma by an auxiliary electric pulse before the coaxial inductor is charged.
- Conduction phase - the current, the magnetic field penetrates into the plasma
- Opening - occurs if the plasma becomes pushed out determined by selfmagnetic insulation

Self-magnetic insulation process

Opening

Insulation

Plasma Flow Switches

- Higher plasma densities ($10^{15} \mathrm{~cm}^{-3}$).
- Conduction times - $\mu \mathrm{s}$.

